Drug sensitivity profile of 5TGM1 murine multiple myeloma cell line emphasizes the translational potential of the syngeneic in vivo model

Jenni Mäki-Jouppila1, Jenni Börnouldi1, Mari I. Suominen1, Tiina E. Kähkönen1, Jussi M. Halleen1, Sanna Timonen2, Elina Huovari2, Katja Suomi2, Swapnil Potdar2, Maria Nurmi2, Päivi Östling2, Jani Saarela2, Katja M. Fagerlund1.

1Pharmasset Services Ltd., Turku, Finland – Email Correspondence to jenni.maki-jouppila@pharmasset.com
2Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland

Introduction

Multiple myeloma (MM) is the second most common hematologic malignancy that originates from B-cells (plasma cells) and causes 2% of cancer-related deaths. Symptoms of MM include bone pain caused by multiple osteolytic lesions, pathologic fractures, and hypercalcemia. Typically, MM has a low growth fraction and it is highly dependent on the microenvironment. These properties have made MM hard to target by conventional chemotherapy, but could now be exploited by novel stroma-targeting drugs and immunotherapy.

These new approaches underline the need for well characterized models with functional immune system and appropriate tumor microenvironment.

Aim of the Study

To gain additional information supporting the use of the syngeneic STG1 murine multiple myeloma model in drug development, we tested drug sensitivity of STG1 cells by screening an extensive panel of drugs.

Materials and Methods

STG1 cells have been received from Dr. Oyajobi, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio and were cultured in IMDM, 15% FBS and 1% penicillin-streptomycin. The drug sensitivity of the cell line was assessed by applying a large panel of drugs covering both cancer chemotherapeutics and many clinically available and emerging molecularly targeted drugs used in the clinic and under development. Evaluating the effects of drug combinations combined with DSS analysis provides a possibility to profile cellular responses to an extensive collection of anti-cancer compounds enabling identification of vulnerabilities in cancer cells, functional investigation of cellular pathways behind drug sensitivity or resistance.

Results

According to DSS analysis, STG1 cells showed sensitivity to conventional chemotherapeutics as well as targeted drugs, and kinase inhibitors, such as MEK1/2 inhibitors. In addition, the cells showed particular sensitivity to several HSP60 inhibitors currently in clinical trials for the treatment of MM. Lenalidomide and pomalidomide, efficient in treating multiple myeloma in humans, both gave low DSS value indicating that STG1 cells are not sensitive to these drugs, which is expected because they do not bind to murine form of the target.

The 5TGM1 cells are sensitive to bortezomib. A Determination of EC50 value (95% confidence interval) for bortezomib in 5TGM1 cells at day 3. Four-parametric log-logistic (4PL) curve was fitted to the cell viability (luciferase) data. EC50 value was calculated as a half-way value between the minimum and maximum of the fitted curve. B) Effects of bortezomib on STG1 cell proliferation. The results are shown as luminescence (CPS; mean ± SE) measured in the CultiTiter-Glo Viability assay at days 0, 3 and 6. BL = Baseline (no added compounds). Cells were cultured on a 96-well-plate.

Conclusions

According to DSS analysis, STG1 cells showed sensitivity to conventional chemotherapeutics as well as targeted drugs, and kinase inhibitors, such as MEK1/2 inhibitors. In addition, the cells showed particular sensitivity to several HSP60 inhibitors currently in clinical trials for the treatment of MM. Lenalidomide and pomalidomide, efficient in treating multiple myeloma in humans, both gave low DSS value indicating that STG1 cells are not sensitive to these drugs, which is expected because they do not bind to murine form of the target. In contrast, STG1 cells were highly sensitive to the proteasome inhibitor bortezomib (DSS 32.2), which is currently in clinical use. In conclusion, the murine STG1 cells show sensitivity to various MM drugs currently in clinical and research use. Cells were seeded to pre-drugged 384-well-plates followed by cell viability measurements (CellTiter-Glo) after 72 hours. Maximal and minimal responses to drugs were analyzed, the EC50 values were calculated and Drug Sensitivity Score (DSS) was calculated for each drug as a measure of reduced viability (1-3). A specific Drug Sensitivity Score (sDSS) can be calculated to identify the effective drug response pattern of a cancer cell line (1-3).

References


Table 1. The murine STG1 cells show sensitivity to various MM drugs currently in clinical and research use. Cells were seeded to pre-drugged 384-well-plates followed by cell viability measurements (CellTiter-Glo) after 72 hours.

<table>
<thead>
<tr>
<th>Compound</th>
<th>DSS</th>
<th>EC50 (nM)</th>
<th>Mechanism</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bortezomib</td>
<td>32.2</td>
<td>2.5</td>
<td>Proteasome inhibitor (26S subunit)</td>
<td>do not bind to murine form of the target</td>
</tr>
<tr>
<td>Carmustine</td>
<td>12.4</td>
<td>1.7</td>
<td>Alkylating agent</td>
<td>do not bind to murine form of the target</td>
</tr>
<tr>
<td>Carfilzomib</td>
<td>22.8</td>
<td>10.2</td>
<td>Proteasome inhibitor (20S subunit)</td>
<td>do not bind to murine form of the target</td>
</tr>
<tr>
<td>Panobinostat</td>
<td>21</td>
<td>18.8</td>
<td>HDAC inhibitor</td>
<td>do not bind to murine form of the target</td>
</tr>
<tr>
<td>Pomalidomide</td>
<td>0.6</td>
<td>-</td>
<td>Immunomodulator</td>
<td>do not bind to murine form of the target</td>
</tr>
<tr>
<td>Melphalan</td>
<td>0</td>
<td>-</td>
<td>Nitrogen mustard alkylating agent</td>
<td>do not bind to murine form of the target</td>
</tr>
</tbody>
</table>

Figure 1. Illustration of A) DSS and B) sDSS determination. C) DSS profile of murine STG1 MM cells. A panel of 460 compounds was tested. DSS = 0 depicts inactivity in cells, DSS > 0 depicts low activity, DSS = 5-10 depicts semi-activity, DSS = 10-20 depicts activity and DSS > 20 depicts high activity of the compounds in cells.