Migliaccio

Inhibiting androgen receptor-associated Src signaling by VAL201 inhibits prostate cancer metastasis in an orthotopic mouse model

GS Morris\(^1\), MI Suominen\(^2\), KM Fagerlund\(^2\), JP Rissannen\(^2\), S Vainikka\(^1\), JM Halleen\(^2\), \(^1\)ValFx Plc, London, UK; \(^2\)Pharmatest Services Ltd, Turku, Finland

Introduction

VAL201 is a specific inhibitor of androgen receptor (AR) and estrogen receptor (ER) associated signaling that has promising effects to reduce prostate cancer growth and the compound is considered as a potential treatment for castration-resistant prostate cancer (1). Inhibition of src by VAL201 takes place after androgen binding, allowing inhibition of growth without blocking desirable receptor-dependent transcriptional activity, and thereby eliminating the majority of side effects associated with androgen deprivation therapies. The ER positive human prostate cancer cell line PC-3 is usually cited as AR negative, but there is evidence of low levels of AR expression as a form that has transcriptional activity that could associate with src (2).

Aim of the Study

We have studied the effects of VAL201 on PC-3 prostate cancer cell proliferation in vitro and growth and metastasis in vivo in an orthotopic xenograft model.

Materials and Methods

The proliferation effects were studied for 100 µM, 1 µM, 10 nM, 100 nM and 1 µM concentrations of VAL201 by measuring WST-1 values at days 3, 5, 7 and 9. Groups with 1 µM genistein (Centrall, El Lilly, Indianapolis, IN) as reference compound were included in the study. The xenograft study was performed with 8-week-old immunodeficient BALB/c nude mice (Harlan Laboratories, B.V., Horst, the Netherlands) that were allocated to 6 groups according to the body weight (with n=15/group), one group receiving vehicle and the others VAL201 at doses 0.04, 0.4, 4, 10 and 20 mg/kg. PC-3 cells (ATCC, Manassas, VA) in Matrigel (BD, Franklin Lakes, NJ) were inoculated orthogonally into the prostate. Subcutaneous dosing was started at day 1 and continued daily for 28 days. The mice were weighed twice a week. Orthotopic tumors were measured by caliper and the prostate and the lymph nodes were harvested at sacrifice. Metastases in lymph nodes were determined from H&E stained paraffin sections. Statistical analysis was performed using linear fixed effect model, one-way ANOVA or non-parametric Kruskal-Wallis test and Fischer’s exact test.

Body weight

Tumor size and metastasis

Summary

- VAL201 is a novel decapeptide representing the first example of a specific inhibitor of steroid-receptor-dependent signal transduction with the 0.4 mg/kg dose.
- VAL201 showed dose-dependent inhibition of PC-3 cell proliferation that was statistically significant with all doses above 100 µM.
- In the xenograft study VAL201 had no effect on body weight.
- Statistically significant effects on orthotopic tumor growth were not observed despite of a 35% decrease observed in tumor volumes with the 0.4 mg/kg dose.
- Most importantly, 0.04 and 0.4 mg/kg doses of VAL201 showed a significant 50% inhibition on the development of lymph node metastases.

Conclusions

VAL1 inhibited proliferation of PC-3 cells in vitro and development of lymph node metastases in a xenograft model, demonstrating its potential for inhibiting prostate cancer growth and metastasis without adverse effects associated with androgen deprivation.

Acknowledgements

We thank Mr Jani Seppänen, Ms Johanna Rantanen and Ms Aminluna Luostarinen for their skillful technical assistance.

References

FIGURE 1. The structure of VAL201, the first example of a specific inhibitor of steroid-receptor-dependent signal transducing activity. VAL201 is a synthetic decapeptide made using standard solid phase techniques. The peptide corresponds to amino acids 377-385 (Ac-PPPYPHRK-NH2) of the human AR, and it was specifically selected as the smallest size that specifically and strongly inhibits the SHD domain mediated binding of Src to the AR.

FIGURE 2. A: Proliferation of PC-3 cells during a seven day treatment with either Gemcitabine (1µM or VAL201 (0.016-20µM). (A) Proportion of 4 days of treatment (ABS. 450nm, mean ± SEM). B: Proliferation after seven days of treatment (ABS. 450nm, mean ± SEM). Notation: " vs p<0.05, ** vs p<0.01, *** vs p<0.001.

FIGURE 3. A: Body weight during the study (g, mean ± SEM). Statistical differences were not observed. B: The proportion of animals with lymph node metastasis. The incidence of lymph node metastasis. There were no metastases in the groups VAL201: 0.04 mg/kg and VAL201: 0.4 mg/kg compared with vehicle group (VAL201: 0.04 mg/kg p=0.016 and VAL201: 0.4 mg/kg p=0.039). A trend of decreased metastases was observed also in group VAL201: 10 mg/kg (p=0.052). Notation: " vs p<0.05.

FIGURE 4. A: Tumor volume at sacrifice (mm³, mean ± SEM). Statistical differences were not observed (p<0.45). B: The proportion of animals with lymph node metastasis. The incidence of lymph node metastasis. There were no metastases in the groups VAL201: 0.04 mg/kg and VAL201: 0.4 mg/kg compared with vehicle group (VAL201: 0.04 mg/kg p=0.016 and VAL201: 0.4 mg/kg p=0.039). A trend of decreased metastases was observed also in group VAL201: 10 mg/kg (p=0.052). Notation: " vs p<0.05.