Hormone Receptor and HER2/HER3 Expression in Preclinical Breast Cancer Models of Primary Tumor and Bone Metastasis

Tiina E. Kähkönen1, Mari I. Suominen1, Jussi M. Halleen1, Jenni H.E. Mäki-Jouppila1, Azusa Tanaka2, Michael Seiler2, Teppo Haapaniemi3 and Jenni Bernoulli1

1Pharmatest Services, Turku, Finland; 2Taconic Biosciences, Rensselaer, NY, USA; 3BioSiteHisto, Tampere, Finland

E-mail correspondence to Jenni Bernoulli (jenni.bernoulli@pharmatest.com)

Introduction

Breast cancers expressing estrogen receptor (ER) and progesterone receptor (PR) are classified as hormone receptor positive, and triple-positive breast cancers express also human epidermal growth factor receptors (mainly HER2).

Despite available hormonal and HER2 targeted treatments, breast cancer metastasizes to bone in high frequency and may develop resistance against the used treatment. Prevention and treatment of bone metastases is challenging, and hormones are strong regulators of both bone and immune system.

The aim of the study was to verify and compare ER, PR, HER2 and HER3 status in preclinical primary breast cancer and bone metastasis models utilizing immunodeficient and human immune system engrafted mice.

Materials and Methods

In an orthotopic tumor study, BT474 human breast cancer cells (ATCC, USA) were inoculated into the mammary fat pad (4x10^6 cells) of female immunodeficient C57 NOG mice (NOG, Taconic Biosciences, USA), Placebo or 17β-estradiol rods (E2, 5 μg per day, PreclinApps Ltd, Finland) were implanted prior to orthotopic cancer cell inoculation. In a bone tumor study, BT474 breast cancer cells were inoculated into the tibia (1x10^6 cells) of intact female C57 NOG or C5734+ human immune system engrafted NOG mice (huNOG, Taconic Biosciences, USA). After 8 weeks of tumor growth, histopathological tumor evaluation from hematoxylin-eosin (H&E) stained sections and immunohistochemical (IHC) stainings for ER, PR, HER2 and HER3 were performed.

Orthotopic BT474 tumor growth in NOG mice

Orthotopic BT474 tumor growth in NOG mice was assessed when tumors reached a size of 200-300 mm^3.

Intratibial BT474 tumor growth in NOG and huNOG mice

Intratibial BT474 tumor growth in NOG and huNOG mice was assessed when tumors reached a size of 200-300 mm^3.

Summary

- Estrogen supplementation is needed to support breast cancer BT474 tumor growth when cancer cells are inoculated orthotopically into mammary fat pad.
- On the contrary, BT474 breast cancer growth was observed in bone even in the absence of supplied estrogen, highlighting importance of tumor microenvironment.
- ER and HER2/HER3 expression was observed in primary and bone tumors, but PR expression was significantly reduced if no estrogen supplement was used.
- No significant differences were observed between immunodeficient and humanized mice regarding intratibial tumor growth and ER, PR and HER2/HER3 expression.

Conclusions

When developing new therapies against breast cancer, treatment targets in preclinical models should be carefully verified.

Focus should be addressed not only on primary tumor but also on bone metastasis where cancer cells are under influence of bone microenvironment and may express differently hormone receptors and HER2/HER3.

While hormones influence breast cancer progression, they also regulate bone turnover and immune system, and therefore humanized mouse models provide an essential platform for novel therapy development.