

4022

100000

Figure 3. In vitro anti-tumor effects of BAY 1082439 and radium-223 as single agents and in combination

Combination of PI3K inhibitor BAY 1082439 with radium-223 is a promising treatment of cancer with bone metastases

Mari I Suominen,¹ Katja M Fagerlund,¹ Andrea Haegebarth,² Arne Scholz,² Enrico Stasik,² Jussi M Halleen,¹ Dominik Mumberg,² Karl Ziegelbauer,² Ningshu Liu²

¹Pharmatest Services Ltd, Turku, Finland; ²Bayer Pharma AG, Berlin, Germany

RESULTS

- BAY 1082439 and radium-223 showed additive to synergistic direct anti-proliferative activity in 4T1 and PC-3 hormoneindependent breast and prostate tumor cell lines (Figure 3A)
- They also showed pronounced synergistic effects on apoptosis induction in hormone-dependent MCF7 and LNCaP cell lines *in vitro* (Figure 3B)

In vivo assessment of BAY 1082439

ntracardiac inoculation of 4T1-GFP breast cancer cells was on day 0. Osteolytic lesions and whole-body tumor burden were measured by X-ray and fluorescence imaging. Body weight was measured 3 times a week QD, once daily

Figure 4. In vivo study design

- BAY 1082439 showed statistically significantly stronger reduction of whole-body tumor burden compared with radium-223 alone (Figure 5)
- Synergistic combination of BAY 1082439 with radium-223 further reduced tumor burden from 37% to 16% and led to complete inhibition of tumor growth in bone marrow (Figure 5)

(A) Whole-body tumor burden. (B) Images of representative animals from each treatment group NS, not significant

Figure 5. Inhibition of whole-body 4T1-GFP tumor burden in mice treated with BAY 1082439 and radium-223

- BAY 1082439 showed single-agent activity in inhibiting 4T1 tumor metastatic growth in soft tissues
- Synergistic effect of BAY 1082439 and radium-223 led to complete inhibition of tumor metastatic growth in kidneys and a significant reduction in metastatic growth in adrenal glands and ovaries (Table 2)

Table 2. Prevention of 4T1 tumor metastatic growth in soft tissues by BAY 1082439 and radium-223

Organ	Treatment			
	Control	Radium-223	BAY 1082439	BAY 1082439 + radium-223
Kidneys (%)	63	22	17	0
<i>p</i> value		0.035	0.012	<0.001
Adrenal glands (%)	88	94	61	43
<i>p</i> value		0.591	0.125	0.019
Ovaries (%)	81	94	56	29
<i>p</i> value		0.323	0.152	0.009

- BAY 1082439 as a single agent is active in reducing tumorinduced osteolysis measured by radiography (Figure 6)
- Strong synergy of BAY 1082439 in combination with radium-223 led to complete prevention of tumor-induced osteolysis (Figure 6)

(A) Total osteolysis area. (B) X-rays of representative animals from each treatment group

Figure 6. Inhibition of osteolysis by BAY 1082439 and radium-223 measured by radiography

BAY 1082439 alone or in combination with radium-223

Figure 7. Tolerability assessment of BAY 1082439 and radium-223

CONCLUSIONS

- BAY 1082439 and radium-223 showed additive to synergistic direct antiproliferative activity and pronounced synergistic effects on apoptosis in breast and prostate tumor cell lines *in vitro*
- BAY 1082439 significantly decreased whole-body tumor burden as a single agent, and even more effectively in combination with radium-223
- BAY 1082439 effectively inhibited tumor-induced osteolysis, measured by radiography, as a single agent and showed further synergistic effect in combination with radium-223
- BAY 1082439 decreased the frequency of soft-tissue metastases, which was even more pronounced when combined with radium-223
- In vivo, the combination of BAY 1082439 at the maximum tolerated dose and radium-223 at the efficacious dose was well tolerated
- In summary, our data indicate additive to synergistic effects of BAY 1082439 and radium-223 in inhibiting tumor cell proliferation, survival, total and bone marrow burden, and tumor-induced osteolysis. Hence, further clinical evaluation of this promising combination therapy for the treatment of cancers with bone metastases and alterations in the PI3K signaling pathway is warranted

References

- 1. Suva LJ et al. *Nat Rev Endocrinol* 2011; 7: 208-218
- 2. Parker C et al. *N Engl J Med* 2013; 369: 213-223
- 3. Liu N et al. Poster 2799 presented at AACR Annual Meeting, Chicago, Illinois, USA, March 31 - April 4, 2012

Acknowledgments

Rachel Fairbanks, BA (Hons) at Complete HealthVizion provided editorial assistance in the development of this poster, funded by Bayer HealthCare Pharmaceuticals