Establishment of a Metastatic Orthotopic Model of Pancreatic Ductal Adenocarcinoma (PDAC) for Drug Development

Justyna Zdrojewska, Jenni H.E. Mäki-Jouppila, Jussi M. Halleen and Jenni Bernoulli
Pharmatest Services, Turku, Finland

E-mail correspondence to Justyna Zdrojewska (justyna.zdrojewska@pharmatest.com)

Pancreatic ductal adenocarcinoma (PDAC) has the worst survival prognosis (<5%) of all common gastrointestinal malignancies. It is typically diagnosed at a very late stage when the tumor has already metastasized to other organs, at which point the treatment can no longer prolong the survival of the patients. To date, surgical resection is the only curative approach present, provided that the cancer is detected at a very early stage. Nonetheless, less than 20% of diagnosed patients qualify for the surgery and majority of these patients will eventually develop recurrence. Despite our advancing knowledge of the tumor biology of PDAC as well as recent improvements in diagnosis, the prognosis remains strikingly poor. The median survival observed after surgery followed by chemotherapy is about 20 months.

The aim of this study was to establish an orthotopic model of PDAC that could be used to study efficacy of new potential treatments.

Materials and Methods

Female (Hsd: Athymic Nude-Foxn1nu, Envigo) mice were used in this study. MiaPaCa-2-Luc human PDAC cells were injected to surgically exposed caudal part of the pancreas. At the time of inoculation, the animals were 4.5 weeks of age. To validate the model, the current standard-of-care (SOC) treatment regimen of gemcitabine and cisplatin, was used (140 mg/kg, i.p. twice weekly). The SOC treatment was initiated two weeks post inoculation and administered twice a week over a period of 4.5 weeks. During the study, tumor burden was quantified by imaging the bioluminescence signal emitted by the MiaPaCa-2-Luc cells using IVIS Lumina II imaging system (PerkinElmer). The mice were stratified to treatment groups based on similar intensity of the bioluminescent readout. Imaging was performed every second week after inoculation of the cells. After 30 days in study, tumor growth in surgical area was observed. At sacrifice, orthotopic tumors and metastatic tissues were dissected and processed for histology and immunohistochemical (IHC) stainings (Mxent, Clone SP20, Abcam). Stained sections were scanned with digital slides scanner (3DHISTECH).

Ex Vivo tumor weight and volume

A

B

Tumor weight

Tumor volume

Figure 3. Ex vivo tumor weight and volume. (A) Tumor weight (mg, median ± 20% IQR or min-max) at sacrifice. SOC = control group. Abr+Gem = treatment group. (B) Tumor weight (mg, median ± 20% IQR or min-max) at sacrifice. COMP = study group used for statistical comparison. **p < 0.01.

Summary

- The observed tumor take rate in the presented model was 100%
- Despite no differences in body weights, mice receiving the SOC treatment gained less weight when comparing the body weights obtained at endpoint relative to baseline
- Ex vivo tumor burden showed decrease in BLI intensity in the group receiving the SOC treatment as compared to the vehicle group
- At sacrifice, tumor weight and volume were lower in the group receiving the SOC treatment as compared to the vehicle group
- MiaPaCa-2-Luc cells induced micrometastasis to other visceral organs including liver
- At the end of the study 66% of mice in the vehicle group versus 41% in the SOC group had palpable tumor in the surgical area.

Conclusions

A metastatic orthotopic PDAC model was established successfully and validated with the SOC treatment that slowed down disease progression. This orthotopic model provides a promising tool for testing new treatments against PDAC in vivo.

Acknowledgements

We thank Pharmaxis for funding and collaboration in this project, and all Pharmatest personnel who contributed to the study, and Eva Alooriemi (Vincit) for statistical analysis.