Towards a more efficient ensemble of predictive models for cancer drug development with special focus on metastatic bone disease

Jenni Bernoulli1, Johanna Tuomeela1,2, Katja M. Fagerlund3, Jukka P. Rissanen1, Mari I. Suominen1 and Jussi Hallen1
1Pharmatest Services Ltd, Turku, Finland; 2Institute of Biomedicine, Department Cell of Biology and Anatomy, University of Turku, Turku, Finland

Introduction
Prostate cancer is the second most common form of cancer affecting men worldwide, and it has a high affinity for metastasis to bone. As bone metastases are challenging to prevent and treat, clinically predictive preclinical cancer models are urgently needed to promote drug development.

Aim of the Study
Our aim was to establish an optimal strategy for efficacy testing of drug candidates for prostate cancer using well characterized and validated research models.

Materials and Methods
PC-3, LNCaP and VCaP cells (ATCC, USA) were used in the in vitro studies. Two known chemotherapy drugs, an anthracycline derivative doxorubicin (Sigma-Aldrich) and a nucleoside analog gemcitabine (Ell Lilly), were tested as reference compounds. The cells were cultured for 5 days and the effects of drugs were studied by measuring proliferation of the cells at days 1, 3 and 5 using a commercial WST-1 proliferation kit (Roche Diagnostics).

PC-3, LNCaP and VCaP cells were inoculated orthotopically into the prostate, or intratibially to the bone marrow cavity of male Balb/c nude or nod-scid mice (n=80, age 4-8 weeks). At the same time with inoculation of androgen sensitive prostate cancer cells, DHT pellets were implanted, if needed. Treatment was started on the following day and continued until the end of the study. Mice were sacrificed 28 days after orthotopical inoculation, examined macroscopically and selected tissue samples (primary tumors, iliac and sacral lymph nodes) were collected for further histomorphometric analysis. In the intratibial models, mice were sacrificed 4-12 weeks after inoculation, x-rayed, examined macroscopically, and selected tissue samples were collected. In all studies, blood samples from saphenous vein were collected during the study and at termination.

To assess changes in bone biomarkers, serum tartrate-resistant acid phosphatase (TRACP) 5b and N-terminal propeptide of type I procollagen (PINP) were analyzed using the MouseTRAP and Rat/mouse PINP ELISA kits, respectively (IDS Ltd, UK). Serum prostate specific antigen (PSA) was analyzed by ELISA kit (R&D Systems, USA).

High throughput screening

FIGURE 1. High throughput approach for cell-based compound library screening using automated platform.

Acknowledgements
We thank Natalia Habalainen-Kirro, Riku Kytömaa, Annika Lustenren, Jari Seppäläinen and Johanna Olling for their skills and excellent assistance.

References

FIGURE 2. A) Effects of chemotherapy agents doxorubicin and gemcitabine on proliferation of A) PC-3 B) LNCaP and C) VCaP cells, and determination of their EC50 values. Both compounds inhibited proliferation of all three prostate cancer cell lines, and they can be used as reference compounds when testing effects of novel drug candidates on proliferation of these cell lines.

Efficacy assessment in vitro

Conclusions
We propose the following strategy for identifying effective prostate cancer drug candidates for clinical studies:
1) High throughput screening of effects of test compounds on proliferation of human prostate cancer cell lines in vitro
2) Determining EC50 values for efficacy of selected compounds on proliferation of human prostate cancer cells in vitro
3) Xenograft studies to test efficacy of selected compounds in orthotopic and metastasis models using the same human prostate cancer lines, whose proliferation the compounds inhibited in vitro

The strategy has demonstrated to be clinically predictive, and it can be exploited widely in anti-cancer drug development.