Effects of cabozantinib alone and in combination with bortezomib in the STG1 murine multiple myeloma model

Mari I Suominen1, Katja M Fagerlund2, ESA Alhoniemi3, Jukka P Rissanen1, Jussi M Halleen1, Dana T Aftab1
1Pharmatech Services Ltd. Turku, Finland, 2Avolitus Oy, Turku, Finland, 3PreclinApps Ltd. Turku, Finland (Current position), 4Exelixis Inc. South San Francisco, CA, USA.

Introduction
Cabozantinib (cabo) inhibits tyrosine kinases including MET, VEGF receptors, and AXL, and has clinical activity in patients with advanced renal cell cancer and other solid tumors with blood metastases (1,3). Multiple myeloma (MM) is a monoclonal B-cell (plasma cell) neoplasia representing ~2% of all cancer deaths. The clinical hallmark is presence of multiple osteolytic lesions causing bone pain, pathologic fractures, and hypercalcemia. Circulating levels of HGF and VEGF are upregulated in MM patients (4), and regulation of plasma cell-osteoblast communication by the HGF-MET signaling pathway has been implicated in the development of lytic bone disease in these patients (5).

Aim of the Study
We studied the efficacy of cab in the STG1 murine multiple MM alone and in combination with bortezomib (btz).

Materials and Methods
Female C57BL/KaMcRf mice, 6-7 weeks old, were allocated to treatment groups (n=15-16 per group) with equivalent average body weights. At day 0, animals were inoculated with STG1 myeloma cells by iv administration. Dosing began at day 1 and continued daily until euthanasia. Two daily doses of cabo 10 and 30 mg/kg, were tested in a 35-day study, and the 10 mg/kg dose was chosen to a 70-day study involving a combination treatment group with btz. Analgesia (buprenorphine 0.2 mg/ml in the drinking water) was used when signs of pain were observed. The mice were sacrificed when weight loss over 25%, paraplegia or breathing problems were observed, or at the end of the study. Serum IGF (ELISA kit, Bethyl Laboratories Inc; Montgomery, TX, USA), and TRACP 5b (TRACP 5b, MouseTRAP kit, IDS, Border, UK) were measured before and 2, 3, and 5 weeks after the inoculation and in the survival study at sacrifice. Development of osteolytic lesions was determined by X-ray (Faxitron MX-20 D12, Faxitron Corp, Brea, USA) at day 35 and in the survival study also at sacrifice. In the survival study, mice were sacrificed individually when they became paraplegic, but alive at the weight loss of 25%, survival rate, or had severe breathing problems. Statistical analysis: biochemical markers up to day 35 were analyzed with LME model with day 1 values as baseline; osteolytic area with ANOVA followed by Tukey’s HSD test; number of osteoclasts and necrotic tumor areas with Kruskal-Wallis followed by Mann-Whitney U-test; survival with log-rank test of Kaplan-Meier estimates.

Bone analysis

Survival analysis

Conclusions
In summary, cabo increased survival and exhibited bone-protective and anti-tumor effects in this murine model of MM. Combination with btz showed additive effects on survival. Based on these results, further investigation in cabo in combination with other therapies in multiple myeloma is warranted.

Acknowledgements
We thank Ms. Riikka Kytomäki, Mrs Natalia Habib-Mrksic, Mrs Annina Lusstarien, Mrs Johanna Öhring and Mr. Jure Sappinen for their skillful technical assistance.

References

Key:
A) Cabozantinib (comparator) group
B) Bortezomib (البرلمان) group
C) Cabozantinib + Bortezomib (组合) group

FIGURE 1. A) Total osteolytic area at day 35 was determined from X-ray images (mm2, median/IQR%min/max). Outliers were marked as floating points in the figure but they were not included in the statistical analysis. Cabo monotherapy decreased total osteolytic area, and the effect was more pronounced with combination therapy. B) Median survival of the group is used as the sacrifice timepoint. IgG2b increased in vehicle and bortz groups, but decreased in cabo and combination groups.

FIGURE 2 A) Kaplan-Meier curve of survival. B) Median survival and hazard ratios compared to vehicle and combination therapy. Cabo + btz combination therapy significantly increased overall survival. BL: baseline (comparator group).

FIGURE 3 A) Sarcoty cobe levels in serum was measured as a tumor marker (mg/ml, median/IQR%min/max). B) Change of serum IgG2b from day 35 to sacrifice in the survival study. Median survival of the group is used as the sacrifice timepoint. IgG2b increased in vehicle and bortz groups, but decreased in cabo and combination groups.

FIGURE 4. A) Necrotic tumor area relative to total tumor area (%, median/IQR%min/max) were determined histomorphometrically. Cabozantinib decreased osteoclastic number and increased necrotic tumor area. B) Representative images of Masson-Goldner Trichrome stained sections. T: tumor, BM: bone marrow, area: necrosis. *** p < 0.001; NS: Non-significant.

In both studies, by study day 35 the osteolytic lesions were not affected by btz, were reduced by cabo alone, and further reduced by the combination therapy. Also by day 35, btz had inhibited the rise in serum IgG2b levels, but cabo and the combination treatment had not. Despite the effects on serum IgG2b, btz did not significantly increase survival, whereas cabo and the combination treatment did. Increased survival with the combination was significant when compared to btz monotherapy, but not when compared to cabo mono therapy. Histology of the 35-day study showed that cabo dose dependently increased the necrotic tumor area in bone. We hypothesized that the rise in IgG2b was due to lysis of plasma cells and not tumor growth. Consistent with this hypothesis, the IgG2b levels of cabo treated mice decreased from day 35 onwards in the survival study.

www.pharmatest.com