
Jenni HE Mäki-Jouppila1, Tiina E Kähkönen1, Mari I Suominen1, Jussi M Halleen1, Jenni Bernoulli1, Jani Saarela2 and Katja M Fagerlund1
1Pharmatest Services, Turku, Finland 2Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland

Email Correspondence to jenni.maki-jouppila@pharmatest.com

Introduction

Targeted therapy for breast cancer expressing hormone receptors such as estrogen receptor (ER) and progesterone receptor (PR) as well as human epidermal growth factor receptor 2 (HER2) is essential. In spite of current targeted therapies, breast cancer has high susceptibility to spread and metastases often turn resistant to the used treatment. Therefore, new therapies are needed especially when cancer becomes resistant to hormonal therapy.

The aim of the study was to investigate drug sensitivity and resistance of BT-474 breast cancer cell line and to recognize possible vulnerabilities especially in HER2+ breast cancer.

Materials and Methods

BT-474 cell line (ER+, PR+, HER2+) is originally derived from human solid, invasive ductal carcinoma of the breast. The cells were cultured in DMEM/Nutrient Mixture F12 Ham supplemented with 10% FBS and penicillin-streptomycin at 37 °C with 5% CO2. HER2 expression was verified by IHC staining (SP3 clone, obtained from Spring Bio). The drug sensitivity of the cell line was assessed by applying a large panel of drugs covering cancer chemotherapeutics and clinically available and emerging drugs including e.g. conventional chemotherapy and kinase inhibitors such as HER2, pan-HER2 and EGFR/HER2 inhibitors. A panel of altogether 525 compounds was tested in five concentrations covering a 10,000-fold drug-relevant concentration range in 384-well format. Cells were seeded to pre-drugged plates, followed by cell viability measurements (CellTiter-Glo) after 72 hours. Maximal and minimal responses to drugs were analyzed, the EC50 values were calculated, and a Drug Sensitivity Score (DSS) was calculated for each drug as a measure of reduced viability (1-3). A selective Drug Sensitivity Score (sdSS) was calculated to identify the selective drug response pattern (1-3).

References


Acknowledgements: We thank Esa Alhoniemi (Vinci) and Karolina Laamanen (FIMM) for skilful technical assistance.

A similar analysis was performed for another breast cancer cell line, BT-20, and the results were compared with those obtained for BT-474 cells.


dSS analysis of BT-474 cell line showed sensitivity to conventional chemotherapy including paclitaxel and doxetaxel and to kinase inhibitors such as EGFR and HER2 inhibitors neratinib, atiblinib, mubritinib, poziotinib, dacemomib and lapatinib with EC50 range from 2 to 98 nM. Furthermore, the BT-474 cells showed sensitivity to P38K and mTOR inhibitors, such as copanlisib and omipalisib, and to HSP90 and HDAC inhibitors, such as tanelespin and abexinostat.

Screening of large compound libraries combined with DSS and sdSS analysis enables drug sensitivity profiling of HER2+ BT-474 breast cancer cells for identification of novel anti-cancer compounds against HER2+ breast cancer. Moreover, the assay enables repositioning of existing drugs to new indications, identification of vulnerabilities in different types of cancer cells, and functional investigation of cellular pathways behind drug sensitivity or resistance.


dSS analysis of BT-474 cell line showed sensitivity to conventional chemotherapy including paclitaxel and doxetaxel and to kinase inhibitors such as EGFR and HER2 inhibitors neratinib, atiblinib, mubritinib, poziotinib, dacemomib and lapatinib with EC50 range from 2 to 98 nM. Furthermore, the BT-474 cells showed sensitivity to P38K and mTOR inhibitors, such as copanlisib and omipalisib, and to HSP90 and HDAC inhibitors, such as tanelespin and abexinostat.

Screening of large compound libraries combined with DSS and sdSS analysis enables drug sensitivity profiling of HER2+ BT-474 breast cancer cells for identification of novel anti-cancer compounds against HER2+ breast cancer. Moreover, the assay enables repositioning of existing drugs to new indications, identification of vulnerabilities in different types of cancer cells, and functional investigation of cellular pathways behind drug sensitivity or resistance.


dSS analysis of BT-474 cell line showed sensitivity to conventional chemotherapy including paclitaxel and doxetaxel and to kinase inhibitors such as EGFR and HER2 inhibitors neratinib, atiblinib, mubritinib, poziotinib, dacemomib and lapatinib with EC50 range from 2 to 98 nM. Furthermore, the BT-474 cells showed sensitivity to P38K and mTOR inhibitors, such as copanlisib and omipalisib, and to HSP90 and HDAC inhibitors, such as tanelespin and abexinostat.

Screening of large compound libraries combined with DSS and sdSS analysis enables drug sensitivity profiling of HER2+ BT-474 breast cancer cells for identification of novel anti-cancer compounds against HER2+ breast cancer. Moreover, the assay enables repositioning of existing drugs to new indications, identification of vulnerabilities in different types of cancer cells, and functional investigation of cellular pathways behind drug sensitivity or resistance.